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Vol. 4Medical care is the most critical issue of our time and will be so for the foreseeable  
future. In this regard, the pace and sophistication of advances in medicine in the past 
two decades have been truly breathtaking. This has necessitated a growing need for 
comprehensive reference resources that highlight current issues in specific sectors  
of medicine. Keeping this in mind, each volume in the Current Issues in Medicine series 
is a stand‐alone text that provides a broad survey of various important topics in a 
focused area of medicine—all accomplished in a user-friendly yet interconnected 
format. This volume addresses advances in medical imaging, detection, and diagnostic 
technologies. Technological innovations in these sectors of medicine continue to 
provide for safer, more accurate, and faster diagnosis for patients. This translates 
into superior prognosis and better patient compliance, while reducing morbidity 
and mortality. Hence, it is imperative that practitioners stay current with these latest 
advances to provide the best care for nursing and clinical practices. While recognizing 
how expansive and multifaceted these areas of medicine are, Advances in Medical 
Imaging, Detection, and Diagnosis addresses crucial recent progress, integrating 
the knowledge and experience of experts from academia and the clinic. The 
multidisciplinary approach reflected makes this volume a valuable reference resource 
for medical practitioners, medical students, nurses, fellows, residents, undergraduate 
and graduate students, educators, venture capitalists, policymakers, and biomedical 
researchers. A wide audience will benefit from having this volume on their bookshelf: 
health care systems, the pharmaceutical industry, academia, and government.
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Note from the Series Editor

A hallmark of medicine is that is continuously evolving, its knowledge base 
continuously expanding. Clearly, the pace and sophistication of advances in 
medicine in the past two decades have been truly breathtaking. This has necessitated 
a growing need for a comprehensive reference that highlights the current 
issues in specific sectors of medicine. Keeping this in mind, each volume in the 
Current Issues in Medicine series is a stand‐alone text that provides a broad survey 
of various critical topics in a focused area of medicine—all accomplished in a user-
friendly yet interconnected format. The series not only highlights current issues 
and advances but also explores related topics such as translational medicine, 
precision medicine, nanomedicine, regulatory science, neglected global diseases, 
emerging pandemics, FDA and patent law, immunotoxicology, theranostics, big 
data, artificial intelligence, novel medical instrumentation, clinical procedures, 
combination drug products, and novel therapies. While bridging the gap between 
basic research and clinical medicine, this series provides a thorough understanding 
of medicine’s potential to address health problems from both the patient’s and 
the provider’s perspectives in a healthcare setting. Each volume is an excellent 
resource for medical practitioners, medical students, nurses, fellows, residents, 
undergraduate and graduate students, educators, venture capitalists, policymakers, 
and biomedical researchers. The multidisciplinary approach of the series makes 
it a valuable reference for health care systems, the pharmaceutical and device 
industry, academia, and governments. However, unlike other series on medicine 
or medical texts, this series focuses on current trends, perspectives, and critical 
issues in medicine that are central to healthcare delivery in the 21st century.
	 The first two volumes in this series focus on the current issues in basic medical 
sciences, subjects that are fundamental to the practice of medicine. These subjects, 
traditionally taught in the first two years of medical school that precede clinical 
instruction, provide a core of basic knowledge crucial for the success in clinical 
medicine during rotations, training, and medical practice. The subsequent volumes 
are dedicated to clinical topics or specialties in medicine. A separate volume on 
medical history and another on perspectives/editorials are part of the series.
	 Medical imaging, detection, and diagnosis have all aided in treatment and 
prevention of disease throughout human history. Technological innovations in 
these critical sectors of medicine continue to provide for safer, more accurate and 
faster diagnosis for patients. They have revolutionized medicine. Hence, it is critical 
that practitioners stay current with these latest advances to provide the best 
care for nursing and clinical practices. Given this backdrop, the current volume 
focuses on the tools, technologies, techniques, and testing protocols related to 
diagnostics and imaging that currently impact medicine. Fundamental coverage 
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on the use of technology in clinical practice is highlighted. The range of topics 
covered here and the expertise of the contributing authors accurately reflect 
the rapidly evolving areas within medical diagnostics and imaging.

Raj Bawa, PhD, MD
Series Editor
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Carbapenem-Resistant Enterobacteriaceae Testing 
in 45 Minutes Using Oligonucleotide Detection 
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26.1 Introduction

Antibiotic-resistant bacterial infections are becoming a public health crisis in 
the United States and worldwide. In the United States alone, antibiotic-resistant  
bacteria are responsible for at least 2.8 million infections and 35,000 deaths  
annually [1]. The Centers for Disease Control and Prevention (CDC) has led a series 
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of actions involving education, surveillance, and antibiotic stewardship that have 
reduced antibiotic-resistant infections and deaths by 18% in communities and  
28% in hospitals. The breakdown of infections and deaths is supplied in the  
CDC report for seven antibiotic-resistant bacteria for 2012 and 2017 and is  
summarized in Table 26.1. The data show that the CDC actions succeeded 
in reducing illnesses and deaths across all antibiotic-resistant bacteria, 
except for Enterobacteriaceae such as Klebsiella pneumoniae and Escherichia  
coli. Of particular concern are infections caused by carbapenem-resistant  
Enterobacteriaceae (CRE) since carbapenems are considered the drug of last  
resort with limited new treatments on the horizon [2].

Table 26.1 Changes in infections and deaths from antibiotic resistant bacteria in 2012 and 
2017

Antibiotic-resistant 
bacteria 

2012 
infections

2017 
infections

% 
Variance

2012  
deaths

2017  
deaths

% 
Variance

Enterobacteriaceae increases in infections and deaths

ESBL-producing 
Enterobacteriaceae 

131,900 197,000 49% 6,300 9,100 44%

Carbapenem-resistant 
Enterobacteriaceae

11,800 13,100 11% 1,000 1,100 10%

Non-Enterobacteriaceae decreases in infections and deaths

Methicillin-resistant 
Staphylococcus aureus

401,000 323,700 –19% 13,600 10,600 –22%

Drug-resistant Candida 44,800 34,800 –22% 2,200 1,700 –23%

Carbapenem-resistant 
Acinetobacter

11,700 8,500 –27% 1,000 700 –30%

Drug-resistant Neisseria 
gonorrhoeae

46,000 32,600 –29% 3,900 2,700 –31%

Vancomycin-resistant 
Enterococcus

84,800 54,500 –36% 8,500 5,400 –36%

Note: Data based on the CDC Report [1].

Abbreviation: ESBL, extended-spectrum beta-lactamases.

Carbapenems are highly effective and are often the only treatment option for 
severe bacterial infections. Some CREs possess genes that produce carbapenemase 
enzymes including KPC, New Delhi metallo-β-lactamase (NDM), oxacillinase-48 
(OXA-48), Verona integron-encoded metallo-β-lactamase (VIM), and imipenemase 
(IMP) [3]. These carbapenemase enzymes allow CREs to survive carbapenem 
treatments by hydrolyzing the carbapenem’s β-lactam ring thus deactivating 
the molecule’s antibacterial properties. Some CREs have developed additional  
resistance mechanisms including redundant β-lactamases, genes conferring 
resistance to other antimicrobial classes, chromosomal porin mutations that  
prevent accumulation of β-lactam agents, and over-expression of efflux pumps that 
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extrude β-lactam agents [4–6]. Carbapenemases are commonly expressed from 
mobile genetic elements such as plasmids or transposons, which can be acquired 
and passed on through horizontal gene transfer, making CP-CREs extremely virulent 
and highly resistant to any therapy.

Timely treatment of CP-CRE infections is critical and is most successful 
when administered at the early stage of the infection when the bacteria are 
at a low concentration. A study of over 50,000 patients hospitalized with 
complicated urinary tract infections, complicated intra-abdominal infection, 
hospital-associated pneumonias, or bloodstream infections determined that CRE 
patients whose treatment is delayed by 2 or more days have double the hospital 
costs and a fourfold increased risk of mortality compared with timely treatment 
(Table 26.2) [7–9].

Table 26.2  Impact of delayed therapy on CRE infection

Infection
Timely  
appropriate therapy

Delayed appropriate therapy 
by 2+ days

Hospital cost/patient

CRE infection $9,875 $25,506

Non-CRE infection $11,539 $21,828

Risk of mortality or discharge to hospice

CRE infection 0.9% 3.7%

Hospital stay

CRE infection 5.1 days 8.5 days

Note: Data based on [7, 8].

Abbreviation: CRE, carbapenem-resistant Enterobacteriaceae.

Despite the need for timely treatment of CP-CRE infections, the current  
turnaround time for detecting CP-CRE, including all approved antimicrobial 
susceptibility testing (AST) assays for CRE, is 2 to 4 days as noted on Table 26.3. 
These include broth microdilution, matrix-assisted laser desorption/ionization-
time of flight (MALDI-TOF) mass spectrometry, real-time polymerase chain  
reaction (RT-PCR), microarray, multidisc mechanism testing, gradient minimum 
inhibitory concentration (MIC) strip (Etest), and Carba NP. Virtually all CP-CRE 
detection methods require a time-intensive bacteria culture to isolate and produce  
a measurable quantity of bacteria for testing as the minimum threshold of  
detection is well above concentrations found in human samples. CP-CRE detection 
tests also vary by their availability in clinical labs, accuracy, ease of use, cost, and  
need for specialized equipment [10–12]. Based on the increasing prevalence of 
antibiotic-resistant CRE infections [1], the rise of new resistance strains and the  
lack of new antimicrobials planned for the market, the best defense against  
antibiotic-resistant CRE would be a rapid, simple, inexpensive, and accurate test  
that could be used in essentially any healthcare setting.

Introduction
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Table 26.3  Antimicrobial susceptibility testing methods for detecting CP-CRE

CP-CRE detection method

Time from sample to result

Isolation culture Test process Total

Quadruplex hybridization assay None 45 min 45 min

Broth microdilution 1–2 days 1–2 days 2–4 days

MALDI-TOF 1–2 days < 1 day 2–3 days

Real-time PCR 1–2 days hours 2–3 days

Microarray 1–2 days < 1 day 2–3 days

Multidisc mechanism testing 1–2 days 2 days 3–4 days

Gradient MIC strip (E-test) 1–2 days 1–2 days 2–4 days

Carba NP 1–2 days <2 h 2–3 days

Note: Data based on [10–12].

Abbreviations: CP-CRE, carbapenemase-producing carbapenem-resistant Enterobacteriaceae; MALDI-TOF, 
matrix-assisted laser desorption/ionization-time of flight; MIC, minimum inhibitory concentration; PCR, 
polymerase chain reaction.

26.1.1 Approach

CP-CRE detection was performed using a sandwich hybridization assay. Nucleic acid 
targets were captured using a magnetic microparticle containing oligonucleotides 
with guanine detection tags and capture probes complementary to a segment 
of the target. A second portion of the target hybridizes to a recognition layer of 
oligonucleotides on a biosensor electrode (Fig. 26.1). A voltammetry technique 
produces an electrical signal from the redox properties of the detection tags bound 
to the particle. In order to overcome the poor detection limits currently 
encountered with nucleic acid biosensors, guanine nucleotides are employed as 
20-mer polyguanine oligonucleotide detection tags and millions of detection tags 
are conjugated to the microparticle to amplify the detection signal. The 20-mer 
polyguanine oligonucleotides are pre-fabricated into guanine-quadruplexes which 
generate 8-oxoguanine oxidization signals at ~0.47 V for improved signal-to-
noise resolution over guanine oxidation signals. The microparticle has a magnetic 
core which allows the nucleic acid targets and detection tags to be magnetically 
separated from nonspecific materials that cause false detection signals and 
degrade the signal-to-noise resolution.

The detection method used in the experiments provides a new paradigm for 
electrochemical detection of nucleic acids [13–17]. Electrochemical detection is 
an appealing technique because of its rapid, simple, and inexpensive applications 
in measuring redox chemicals such as glucose. Electrochemical biosensors for 
detecting redox nucleotides such as guanine have not attained widespread 
appeal because of their inability to achieve low detection limits necessary for 
clinical applications.
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Figure 26.1  Quadruplex sandwich hybridization assay components [13, 14] with KPC 16S 
rRNA sequence used in hybridization assay.

26.2 Materials and Methods

26.2.1 Isolates

Study isolates included three quality control (QC) strains of CP-CRE that are 
available to clinical laboratories: Klebsiella pneumoniae ATCC BAA 1705 (KPC-2), 
Klebsiella pneumoniae ATCC BAA-2814 (KPC-3), and E. coli ATCC BAA 2340. Non- 
carbapenemase-producing Klebsiella pneumoniae ATCC 13883 was also evaluated. 
The study tested 28 samples comprising 22 carbapenemase-producing sample, 
4 non-carbapenemase-producing samples, and 2 samples with no bacteria.

Table 26.4 Identification of CP-CRE carbapenemase tested

Bacteria Carbapenemase Identification
K. pneumoniae KPC-2 ATCC BAA-1705
K. pneumoniae KPC-3 ATCC BAA-2814
E. Coli KPC ATCC BAA-2340
K. pneumoniae None ATCC 13883

Abbreviations: CP-CRE, carbapenemase-producing carbapenem-resistant Enterobacteriaceae; KPC, 
Klebsiella pneumoniae carbapenemase; KPC-2 Klebsiella pneumoniae ATCC BAA 1705; KPC-3, Klebsiella 
pneumoniae ATCC BAA-2814.

Materials and Methods
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26.2.2 Probe Design

Detection probes were designed to hybridize with targets associated with the  
blaKPC gene. Suitable targets were identified as the 16S rRNA gene (GenBank: 
X87276.1) associated with strain ATCC BAA-1705 and corresponding to blaKPC-2 
and with strain ATCC BAA-2814 corresponding to blaKPC-3 (ATCC, Manassas, VA).  
As illustrated in Fig. 26.2, nucleotide sequences of ~70 bases were used for capture 
and recognition. The recognition sequence was selected at the 3′ end and the  
capture sequence was selected a few hundred bases from the 3′ end. This  
configuration produced a larger oxidation signal peak than binding at the 5′ end  
because the quadruplexes were closer to the biosensor. The capture probe  
also contained a 20-mer polyguanine sequence on the same oligonucleotide  
(Table 26.5). Polyguanine was transformed into guanine-quadruplexes by heating  
the oligonucleotides in a sodium acetate–formamide solution.

Figure 26.2 A K. pneumoniae 16S rRNA associated with blaKPC-2 forms a sandwich  
hybridization assay with a magnetic particle conjugated with a polyguanine capture  
probes and a biosensor conjugated with a recognition probe.

Table 26.5  Sequences for detecting blaKPC-2 gene from K. pneumoniae 16S rRNA

Target
Sequence 
ID. RNA sequence ssOligo Probe

KPC-2 
16s 
rRNA 
(ATCC 
BAA 
1705)

GenBank: 
X87276.1

GCCGGGAACT CAAAGGAGAC 
TGCCAGTGAT AAACTGGAGG 
AAGGTGGGGA TGACGTCAAG 
TCATCATGGC

5′ Biotin-TTA 
GGGGGGGGGGGGGGGGGGGG 
TTATTTTT 
CGGCCCTTGA GTTTCCTCTG 
ACGGTCACTA TTTGACCTCC 
TTCCACCCCT ACTGCAGTTC 
AGTAGTACCG 3′

Capture

GGGAGG GCGCTTACCA 
CTTTGTGATT CATGACTGGG 
GTGAAGTCGT AACAAGGTAA 
CCGTAGGGGA ACCTGCGGTT 
GGATCACCTC CTTT

5′ Biotin-TT TTT TTT TT
AAAG GAGGTGATCC 
AACCGCAGGT TCCCCTACGG 
TTACCTTGTT ACGACTTCAC 
CCCAGTCATG AATCACAAAG 
TGGTAAGCGC CCTCCC 3′ 

Recognition

Abbreviation: KPC-2 Klebsiella pneumoniae ATCC BAA 1705.
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The recognition and capture probes are biotinylated. The capture probes were 
conjugated to streptavidin-coated magnetic microparticles (Bangs Laboratories, 
Fishers, IN) and the recognition probes were conjugated to unique working  
electrodes on a 96-well streptavidin-coated carbon biosensor microtiter (DropSens, 
Llanera, Spain) using streptavidin–biotin interactions.

26.2.3 Filter Concentration and Lysis

Bacteria were prepared in tryptic soy agar medium (Becton, Dickinson (BD),  
Franklin Lakes, NJ) and serial diluted in broth medium and commercial urine  
(Sigma-Aldrich, St. Louis, MO) to 104 cfu/mL. Samples were concentrated with 
a 0.45 μm filter (Pall, Port Washington, NY) and re-suspended in biology-grade  
water and incubated at room temperature for 15 min. The β-lactam antibiotic  
meropenem was added to the resuspension to assess if meropenem caused a  
signal increase from the KPC-producing bacteria. Meropenem doses ranged from  
0 μg/mL to 2048 μg/mL. Bacteria were then lysed in 200 μL lysis buffer consisting 
of 2 M guanidinium thiocyanate (GTC), 80 mM beta-mercaptoethanol (BME),  
25 mM sodium citrate, 20 μg/ml of glycogen (pH 6) with 5  μL dimethyl sulfoxide  
(1%) then incubated at room temperature (RT) for 5 min.

26.2.4 Magnetic Separation

The solution was mixed for 5 min with 7 μL of 1.5 µm streptavidin-coated magnetic 
particles conjugated with quadruplex tags and DNA detection probes (Integrated  
DNA Technologies (IDT), San Jose, CA), then incubated at RT for 10 min. Samples 
were placed in a magnetic separation microtiter (Epigentek, Farmingdale, 
NY) and a magnet was applied for 2 min, then the supernatant was discarded. 
The magnet was removed and the magnetic particle complexes were washed 
with 100  μL 80 mM sodium acetate (pH 9). The magnetic particle complexes 
were then re-suspended in sodium acetate and allowed to hybridize for 10 min 
at RT on a streptavidin-coated carbon working electrode conjugated with 
capture probes and enable sandwich structures to form as illustrated in Fig. 26.1.

Prior to the experiments, different sized particles were evaluated for their 
corresponding 8-oxoguanine signals. The 100 nm and 350 nm magnetic particles 
(Micromod, Rostock, Germany) did not provide measurable 8-oxoguanine oxidation 
signals and the particles appeared to have decomposed during the test process. 
The 500 nm, 750 nm and 1.5 μm streptavidin-coated magnetic microparticles 
(Bangs Laboratories, Fishers, IN) were all successfully able to measure 8-oxoguanine 
oxidation signals. The 1.5 μm particles generated the strongest signals and were 
thus used in the experiments.

26.2.5 Amperometric Voltammetry

The biosensor microtiter was connected to a potentiostat (PalmSens). A square  
wave voltammetry scan produces a peak electrical current at ~0.47 V from 

Materials and Methods
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8-oxoguanine oxidation in sodium acetate (pH 9) (Fig. 26.3A). A voltammetry 
scan was made with sodium acetate (pH 9) before the magnetic particle-RNA- 
biosensor sandwiches were formed to provide a baseline signal. The net  
8-oxoguanine oxidation signal was determined to be the difference between 
the 8-oxoguanine oxidation signal in sodium acetate and sodium acetate signal  
(Fig. 26.3B).

Figure 26.3 (A) Voltammetry scan of quadruplex 8-oxoguanine oxidation current peak in 
sodium acetate (pH 9) with a peak current signal at ~0.47 V and the background signal 
from sodium acetate (pH 9) on the same sensor before the sandwiches were formed, 
and (B) the net signal calculated from the difference of the two scans in A.

The assay was initially developed with the 96-well carbon microtiter sensors 
and was coated in the lab with streptavidin. Each sensor was evaluated for a 
baseline signal with 80 mM sodium acetate (pH 9) to ensure proper sensor 
functionality. The 8-oxoguanine oxidation signal generated for the same sample 
varied by 2–10% between sensors. When the development work switched to 
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microtiter sensors pre-coated with streptavidin, the variability increased by up to 
40%. Variability was reduced by subtracting the baseline sodium acetate buffer 
signal measured prior to hybridization, from the 8-oxoguanine oxidation signal 
measured on the same sensor. This reduced the same sample variation to 
3–16% between sensors. The pre-coated microtiter sensor displayed a new peak 
at 0.15 V, which did not occur when streptavidin was coated in the lab. 
This new peak was likely due to oxidation from residual chemicals from the 
streptavidin coating process employed by DropSens. It was observed that the 
0.15 V peak varied in amplitude on different sensors and in some cases 10 or more 
baseline scans were needed to remove the 0.15 V peak before the sensor could 
be used for hybridization.

Square wave voltammetry (SWV) scan parameters were optimized for 
8-oxoguanine in advance of the KPC experiments by adsorbing quadruplex 
oligonucleotides on the sensor surface and applying SWV scans. Variations 
of SWV settings were evaluated to find the setting that produced the greatest  
8-oxoguanine oxidation signal peak. This setting was then used for KPC assay 
development.

26.3 Results

Twenty-eight samples were tested for the presence of KPC enzymes from CP-CRE  
and non-CP-CRE. The results are summarized in Table 26.6. All 22 samples 
containing CP-CRE generated a positive signal which was greater than the 0.2 μA  
background baseline. Of the 6 samples containing the susceptible K. pneumoniae 
or no bacteria, 5 reported true negative with the signal below the threshold.  
The normalized 8-oxoguanine oxidation signal peak at ~0.47 V was used to 
detect the presence of carbapenemase KPC enzymes as illustrated in Fig. 26.4.  
One false positive occurred with a non-KPC-producing K. pneumoniae and was  
likely caused by poor sensor calibration.

The magnitude of the KPC signal was measured for each CP-CRE species. 
As shown in Table 26.7, all three species reported an average signal greater than 
the threshold but with different average signal magnitudes: 1.2 µA for the KPC-2 
species, 1.1 µA for the KPC-3 species, and 0.4 µA for the E. coli KPC species. 
The strain that did not produce KPC had an average signal of 0.1 µA, which was 
below the threshold detection value. The magnitude of the KPC signal was also 
measured for samples resuspended in meropenem for the ATCC BAA 1705 (KPC-2) 
and ATCC BAA-2814 (KPC-3) species. High dose exposure between 512 μg/mL 
and 2048 μg/mL meropenem produced an average signal of 1.2 μA, while low 
dose exposure between 0 μg/mL and 128 μg/mL (Table 26.8) meropenem 
produced an average signal of 1.1 μA. Based on the test results, there appeared 
to be no relationship between meropenem exposure and the KPC signal. Testing 
with bacteria samples in broth and urine provided near identical results 
suggesting that filtered urine followed by magnetic separation had no impact on 
hybridization or 8-oxoguanine oxidation signal generation.
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Figure 26.4 Voltammetry scan of quadruplex 8-oxoguanine oxidation signal from KPC- 
producing and non-KPC-producing K. pneumoniae after baseline scan subtraction.

Table 26.6  Summary of samples tested for KPC

True outcome False outcome

Positive test prediction 22 1 PPV = 22/23

Negative test prediction 0 5 NPV = 5/5

Sen. = 22/22 Spec. = 5/6

Abbreviation: KPC, Klebsiella pneumoniae carbapenemase.

Table 26.7  KPC signal amplitude by CP-CRE species

CP-CRE species Average signal

ATCC BAA 1705 (KPC-2) (8) 1.2 μA

ATCC BAA-2814 ( KPC-3) (12) 1.1 μA

ATCC BAA-2340 (E. coli KPC) (2) 0.4 μA

ATCC 13883 (Non-KPC) (4) 0.1 μA

No Bacteria (2) 0.1 μA

Abbreviations: CP-CRE, carbapenemase-producing carbapenem-resistant Enterobacteriaceae; KPC, 
Klebsiella pneumoniae carbapenemase.
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Table 26.8  KPC signal amplitude by meropenem dose

Meropenem dose Average signal

512–2048 μg/mL Meropenem (13) 1.2 μA

0–128 μg/mL Meropenem (7) 1.1 μA

Abbreviation: KPC, Klebsiella pneumoniae carbapenemase.

26.4 Discussion

The 2014 US National Strategy for Combating Antibiotic-Resistant Bacteria [18] 
identified a critical goal for improved diagnostics to detect antibiotic resistance 
profiles in 30 min or less for 18 bacteria of highest concern. This was intended 
to allow physicians to make optimal treatment decisions, and help public health 
officials prevent the transmission of disease and slow the development of 
resistance. Despite this goal most effective antibiotic-resistant diagnostic tests 
still take several days from specimen collection to results and can be extended by 
days or weeks if cultures are required. As a consequence treatment decisions are 
typically made before laboratory results are available. Patients may be initially 
treated with antibiotics when none are needed, prescribed an inappropriate 
antibiotic, or treated with multiple antibiotics when a single antibiotic would 
have been effective [18].

The objective of this study was to detect carbapenem-resistant 
Enterobacteriaceae directly from a sample without using a culture. The approach 
employed a modified lateral flow test protocol that captured nucleic acid targets 
from a KPC RNA sequence and formed a hybridization sandwich structure on a 
biosensor electrode. The novelty of the approach was to replace optical labels 
with a microparticle conjugated with millions of electrical quadruplex tags. 
The study investigated if rapid direct detection of KPC using quadruplex tags 
was able to produce sufficient sensitivity and specificity and avoid the need for a 
time-intensive culture.

The study demonstrated that three different CP-CRE bacteria tested positive 
in all 22 samples, and non CP-CRE samples tested negative in 5 of 6 samples. 
This study was the first use of quadruplex tags in a hybridization assay and as a 
consequence significant effort was spent optimizing the assay which prevented 
more samples from being tested. 

Hybridization time and additional process steps for filtration, meropenem 
incubation, lysing and magnetic separation extended the test time to 45 min. 
Meropenem incubation was found to have no impact on carbapenemase 
production and could be removed from the protocol. The assay did not 
employ PCR so hybridization components were not limited in length to 20 mer 
sequences. It was found that probes with 70 mer sequences substantially reduced 
hybridization time and improved detection accuracy over shorter sequences.

The study employed bacteria concentrations of 104 cfu/mL. A further 
reduction in detection limit would be needed for clinical use. Lower concentration 
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samples containing 100 cfu/mL were successfully detected but not included in 
the study results. Further work will increase the magnetic particle size beyond 
1.5 μm diameter. A larger microparticle will deliver more quadruplex tags per 
KPC RNA complex and provide a measurable signal at lower concentrations. Further 
work will also employ a sample volume greater than 1 mL. Filter concentrating 
a larger sample volume will capture more bacteria for detection and achieve 
lower detection limits.

The study was limited to KPC and did not evaluate other carbapenemase 
enzymes. One of the advantages of electrochemical detection is the ability to detect 
a number of unique analytes from the same sample using multiple working 
electrodes. A commercial example is the Abbott i-STAT. Future work will detect 
KPC, NDM, OXA-48, VIM and IMP separately on individual electrodes to indicate 
which carbapenemase is present. 

The quadruplex CP-CRE assay is intended to be used in a point-of-care cartridge 
without requiring the sample to be prepared with a culture. A culture-free CP-CRE 
test will allow appropriate treatment to be provided days earlier than with current 
tests. Not only will this improve patient outcomes, but the associated healthcare 
costs can be reduced. A POC test will provide the opportunity to fast track 
testing for CP-CREs by identifying patients who are at high risk of encountering a 
CP-CRE infection. A POC test can also be administered at a physician’s office.

Another unmet need is rapid culture-free testing of extended- 
spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae. ESBL-producing 
Enterobacteriaceae have over 10 times higher incidences than carbapenemase-
producing Enterobacteriaceae, and incurred a 49% increase in infections and 
44% increase in deaths between 2012 and 2017. A culture-free ESBL-producing 
Enterobacteriaceae test can complement the CP-CRE test to determine if 
carbapenem or ESBL treatment is more appropriate.

The study encountered some limitations which will be addressed in further 
development activities. The assay was tested with spiked broth and urine 
samples instead of patient specimens. Future work will test a wider range of 
KPC strains and CP-CRE organisms from actual patient specimens. 

26.5 Conclusion

The study demonstrated that KPC from CP-CRE is accurately detected using 
quadruplex tags in 45 min without bacteria isolation, culture, or PCR. While the 
experiments were done with 104 cfu/mL spikes, high sensitivity and specificity 
will be required at lower detection limits for clinical use. All process steps are 
conducted at room temperature which will enable the test to be conducted in a 
point-of-care cartridge with a portable potentiostat.

The study also demonstrated that signal amplification using quadruplex 
tags could be an alternative to PCR and cultures for detecting bacteria and 
viruses since it is faster, easier, and less expensive to attach millions of tags than 
to replicate millions of copies.



825Abbreviations

The core components of the quadruplex detection approach are mostly generic. 
A new assay can be rapidly adapted to detect a nucleic acid target from a genome 
sequence of a RNA, DNA, or gene. Sensor electrodes and magnetic microparticle 
conjugates can be customized for new targets by conjugating the required 
probes. This allows a baseline assay to be rapidly developed and subsequently 
optimized for the required sample type and assay performance. Protein targets 
can use aptamers or antibodies in a sandwich immunoassay along with the 
quadruplex tags on the magnetic particle conjugates.

Many applications can benefit by detecting nucleic acid targets with 
quadruplex hybridization assays at the POC or in a resource-limited setting 
where PCR equipment, laboratory, and skilled operators are not available. 
Quadruplex hybridization assays conducted at the POC can avoid false-negative test 
outcomes caused by nucleic acid degradation from transporting samples to a 
laboratory, and from freezing and thawing processes when temporarily stored 
before sample preparation. Quadruplex tags with magnetic separation can also 
reduce the incidence of false-positive test outcomes by avoiding complex sample 
process steps and removing materials that interfere with detection.

Another limitation of nucleic acid amplification tests, including PCR, is the 
inability for the test to distinguish viable organisms from dead organisms. 
Pathogenic nucleic acids can remain in the body for weeks after the organisms 
are dead and produce a positive test outcome. This can incorrectly indicate that 
the patient requires treatment, can infect others or needs to be quarantined. In 
many cases a culture is the recommended test to determine if microorganisms are 
viable. However cultures can take several days or weeks for microorganisms to 
be isolated and cultured to produce a measurable optical signal or color change. 
The quadruplex test is quantitative and generates an electrical signal that is 
proportional to the number of analytes in the sample. A portion of the sample can 
undergo a rapid test to determine if the target microorganism is present. A new 
sample can be measured at a later time or a second portion of the original sample 
can be incubated at an elevated temperature with nutrients to allow a few 
reproduction cycles to produce a higher signal than the initial test if the target 
microorganisms are viable. Because of the sensitivity of the tags, as few as 
4–6 reproduction cycles could be needed which is a fraction of the time of a 
traditional culture using insensitive dye or optical labels.

Abbreviations

AST:	 antimicrobial susceptibility testing
BME:	 beta-mercaptoethanol
BSL3:	 Biosafety Level 3
CDC:	 Centers for Disease Control and Prevention
CLIA:	 Clinical Laboratory Improvement Amendments
COVID-19:	 Coronavirus disease 2019
CP-CRE:	 carbapenemase-producing carbapenem-resistant Enterobacteriaceae
CRE:	 Carbapenem-resistant Enterobacteriaceae
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ESBL:	 extended-spectrum beta-lactamases
GTC:	 guanidinium thiocyanate
IMP:	 imipenemase
KPC:	 Klebsiella pneumoniae carbapenemase
KPC-2:	 Klebsiella pneumoniae ATCC BAA 1705
KPC-3:	 Klebsiella pneumoniae ATCC BAA-2814
MALDI-TOF:	 matrix-assisted laser desorption/ionization-time of flight mass 

spectrometry
MIC:	 minimum inhibitory concentration	
NDM:	 New Delhi metallo-β-lactamase
OXA-48:	 oxacillinase-48
PCR:	 polymerase chain reaction
POC:	 point of care
QC:	 quality control
RT:	 room temperature
RT-PCR:	 real-time polymerase chain reaction
SWV:	 square wave voltammetry
VIM:	 Verona integron-encoded metallo-β-lactamase
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